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Abstract

Bundle adjustment is the gold standard for refining so-
lutions to geometric computer vision problems. This paper
develops an uncertainty visualization technique for bundle
adjustment solutions to Structure from Motion problems.

Propagating uncertainty through an optimization—from
measurement uncertainties to uncertainties in the resulting
parameter estimates—is well understood. However, the cal-
culations involved fail numerically for real problems. Often
we cope by considering only individual variances, but this
ignores the important mutual dependencies between param-
eters. The dominant modes of uncertainty in most models
are large motions involving nearly all parameters at once.
These frequently look like flexions, stretchings, and bend-
ings in the overall scene structure.

In this paper we present a numerically tractable method
for computing dominant eigenvectors of the covariance of a
Bundle Adjustment solution. We pay careful attention to the
mismatched scales of rotational and translational param-
eters. Finally, we animate this spectral information. The
resulting interactive visualizations (included in the supple-
mental) give insight into the quality and failure modes of a
model. We hope that this work is a step towards broader
uncertainty-aware computation for Structure from Motion.

1. Introduction
The final step of many geometric computer vision prob-

lems is bundle adjustment: a non-linear refinement of all the
model parameters. Structure from Motion problems are one
of the most studied specializations of bundle adjustment.
Here the goal is to jointly infer the parameters of cameras
and of 3D points that the cameras observe. The theoreti-
cal machinery to propagate uncertainty though the bundle
adjustment problem has been available for some time [11],
but this uncertainty information has not found widespread
use. In practice, the computations are numerically fraught
and often expensive. Also, using the resulting covariance

Figure 1: Two views of a large mode of uncertainty in the
LADYBUG dataset. Each blue-red line shows the motion of
a single camera in this mode. Notice the structure indicated
by parallel lines: each set of parallel motions are cameras
that are tightly coupled together. The structure of the model
is revealed to be five superimposed chains of cameras. The
macro-scale motions of this mode are bendings, both at the
ends and in the middle of the problem. Although the cor-
ners and centerpoint appear less uncertain in this mode, the
center has large motions in other nearby modes.

correctly can be nuanced [20].
This paper develops a method to visualize bundle ad-

justment covariance for Structure from Motion (SfM) prob-
lems. We extract and visualize the dominant modes (eigen-
vectors) of uncertainty in a model, such as the one shown
in Figure 1. In contrast to individual parameter variances,
which treat each parameter as if the others were fixed, these
modes show the collective motions of highest uncertainty.
These modes often have narrative interpretations that can
give us useful insight into the properties and challenges of
a scene. For instance, in Figure 1, we see that the scene is
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structured not as a single cluster, or even a single chain, but
as a loose superposition of five chain-like submodels.

A quick inspection can show us clusters of cameras that
are very well localized with respect to each other, but also
corners and joints where large clusters are linked uncer-
tainly. We may discover that the relative scale of large
sections is poorly known, or that there is very little cou-
pling between nighttime and daytime images. Our visual-
izations reveal the macro-scale model structure that dom-
inates the overall uncertainty. We distinguish our global
(whole-model) uncertainty information from local uncer-
tainty information for small blocks of parameters. Such re-
stricted calculations do not capture the mutual dependencies
and interactions across parameter blocks on the model.

The core idea behind the visualization is extremely sim-
ple: each eigenvector is a tangent space perturbation to the
model. We modulate the perturbation sinusoidally and ren-
der the resulting time-varying model in 3D. We encourage
the reader to look at the supplemental (or look at the code
we will release) for interactive WebGL models which are
much more intuitive than static 2D renderings.

There are non-trivial numerical obstacles to computing
these eigenvectors. To stay numerically stable we avoid
computing any matrix inverses. Instead, we render inverses
unnecessary by directly extracting the spectral information.
We also must address issues of gauge and norm-modeling.
Because the matrices in question are quite stiff, poor design
choices lead to wildly inaccurate solutions.

Our contributions are: (1) a method for extracting the
dominant modes of uncertainty of an SfM problem, and
(2) a simple and effective scheme to visualize this uncer-
tainty information. We end with a hope for further ap-
plications of spectral uncertainty information in building
uncertainty-aware SfM systems. Our code and visualiza-
tions are available at https://wilsonkl.github.
io/sfmflex-release.

2. Related Work
Triggs et al. [20] give a classic overview of the bundle

adjustment problem and its applications in computer vision.
They conclude with a detailed discussion of gauge freedom,
where solutions are only determined up to a choice of coor-
dinate systems. Covariances may look very different under
different gauges, making it difficult to directly compare un-
certainties of different problems.

Kanatani and Morris [12] and Absil et al. [1] developed
Riemannian geometry theories of uncertainty propagation
on manifold-valued optimization problems. At the cost of
introducing some significant mathematical machinery, these
approaches elegantly derive covariances of bundle adjust-
ment problems. The standard nonlinear least squares solver
package, Ceres-Solver [3], now incorporates covariance es-
timation, although it does not support large problems that

have gauges (such as the problems we are interested in).
Several Structure from Motion systems incorporate un-

certainty in their decision making. Agarwal et al. [2] use
the traces of covariances of two-view models as a selection
criterion while building their scene graphs. In the context of
incremental SfM, Haner and Heyden [9] use camera param-
eter uncertainty for next-best-view selection. Schonberger
and Frahm [18] use approximations to the covariance infor-
mation to scale to larger problems.

Polic and Pajdla [17] give a method to explicitly com-
pute entire SfM covariance matrices. After reducing the
problem to only camera parameters with a Schur comple-
ment, they perform a matrix pseudo-inversion through a
Taylor expansion. In a followup, Polic et al. [16] compute
the covariances faster and more accurately by using an ex-
plicit nullspace description and a matrix block-inversion. In
contrast we avoid the numerical dangers of explicit pseudo-
inverses by computing eigenvectors directly from the in-
verse covariance.

In this paper our focus is on applying spectral uncertainty
information to a visualization task.

3. Method
This section contains a full discussion of our method for

accurately computing and visualizing covariance eigenvec-
tors. We begin with background on covariances of nonlin-
ear least squares problems (Section 3.1). Next we describe
our method in several parts: reducing the problem size (Sec-
tion 3.2), appropriately choosing a norm (Section 3.3), solv-
ing for the dominant eigenvectors (Section 3.4), and finally
animating the eigenvectors for visualization (Section 3.5).
We present a discussion and analysis of our results along-
side a gallery of visualizations in Section 4.

3.1. Covariance of Nonlinear Least Squares

Bundle adjustment is an instance of nonlinear least
squares. These problems have the form

x∗ = arg min
x

1

2

∑
i

‖ri(x)‖2, (1)

where the residual functions ri = yi− fi(x) describe a dif-
ference between model and measurement, and the param-
eter vector x is the quantity to be determined. Assuming
the noise model r(x) = y− f(x) +N (0, I), the maximum
likelihood estimator is in fact the minimizer of Equation (1),
and the covariance of the estimate is known to be the in-
verse of the Hessian matrix: V = H† [11]. (H† denotes
the Moore-Penrose pseudoinverse.) We leave the problem
instance gauge-free, as the choice of a gauge-fixing con-
straint greatly reshapes the resulting uncertainties.

Measurement Covariance OurN (0, I) noise model can
be improved if we have an estimate Σm of the covariance
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of the measurements (i.e., of the input to our problem). In
our updated model the residuals are derived from the mea-
surements as r(x) = y− f(x) +N (0,Σm). The minimum
of Equation (1) is no longer the maximum likelihood esti-
mator, but it is simple to transform the problem back into a
nonlinear least squares problem: since covariances are sym-
metric positive definite, we can write

Σ
− 1

2
m r(x) = Σ

− 1
2

m y − Σ
− 1

2
m f(x) +N (0, I)

or
r̃(x) = ỹ − f̃(x) +N (0, I) (2)

where r̃ = Σ
− 1

2
m r, ỹ = Σ

− 1
2

m y, and f̃ = Σ
− 1

2
m f . With

the residuals normalized in this way, the MLE of our
model is once again the nonlinear least squares solution of
arg minx ‖r̃(x)‖2.

Estimating the measurement covariance Σm is a poorly
posed problem requiring heavy regularization or assump-
tions. Lhuillier and Perriollat[15] use an i.i.d. assumption:
Σm = σ2I , where σ2 = ‖r(x)‖/(2No−pNc−7) whereNc

is the number of cameras in the scene, p is the dimension-
ality of the camera model, and No is the number of point-
camera observations in the scene. Bishop [6] suggests using
Σm = Diag(|r(x)|). Kanatani and Morris [12] give a more
principled method based on patch windows in the neighbor
of image observations, but it is expensive to compute. We
use Bishop’s method because we consistently observed it
leading to problems with better numerical conditioning.

The Gauss-Newton Approximation For problems with
many parameters and residuals, the Hessian is intractably
expensive to compute. Instead, it is standard to use an
approximation. Writing x = (x1, . . . , xn) and r̃(x) =
(r̃1(x), . . . , r̃m(x)), let us expand the Hessian:

Hjk(x) =
∂

∂xj

∂

∂xk
r̃(x)

=

m∑
i=1

 ∂r̃i
∂xk

∂r̃i
∂xj︸ ︷︷ ︸

First-derivative terms

+ r̃i
∂2r̃i

∂xj ∂xk︸ ︷︷ ︸
Second-derivative terms



The second-derivative terms are expensive to compute. The
standard Gauss-Newton approximation is to assume

m∑
i=1

r̃i
∂2r̃i

∂xj ∂xk
≈ 0, ∀j, k. (3)

This approximation works best when the residual functions
ri have low values at the solution (r̃i ≈ 0) and or when they
have low curvature ( ∂2r̃i

∂xj ∂xk
≈ 0).

The Hessian is now quite simple to work with. Writ-
ing the Jacobian matrix as J̃ij = ∂r̃i

∂xj
the Hessian becomes

H ≈ J̃>J̃. Recalling that r̃ = Σ
− 1

2
m r, so that J̃ = Σ

− 1
2

m J,
the covariance of a nonlinear least squares estimate given
measurement covariance Σm is

V = H† ≈
(
J>Σ−1m J

)†
. (4)

3.2. Reducing the Problem Size

The matrix J>Σ−1m J is large and perhaps ill-conditioned,
which makes it difficult to work with numerically. We use
several domain-specific simplifications. First, the parame-
ter vector for Structure from Motion problems contains sev-
eral different types of variables: camera extrinsics (position,
orientation), camera intrinsics (focal length, distortion coef-
ficients), and 3D point positions. Of these, the camera ex-
trinsics are most interesting to visualize. For computational
convenience, we drop the intrinsics.

Second, we factor out the 3D points through the Schur
complement1. Although forming the Schur complement in-
volves a matrix inversion, the matrix in question is block-
diagonal with a 3-by-3 block for each scene point, so the
inversion is accurate and efficient [3, 20]. This operation
reduces the dimensionality of our matrix from 9Nc + 3Np

to 6Nc, where Nc and Np are the number of cameras and
points in the problem. Since Np is often many orders of
magnitude greater than Nc, this is a huge improvement.

Although J>Σ−1m J is quite sparse, forming the Schur
complement causes a lot of fill-in, typically about 40% in
our experiments. This is high enough that dense methods
now out-perform sparse ones. Additionally, the Schur com-
plement is such a reduction in size that it is far more ef-
ficient to form it explicitly, rather than using a matrix-free
representation.

3.3. Considerations on Units and Norms

Before any spectral computations, we must address a
subtle difficulty: vector norms. First we discuss vectors that
V can operate on.

As second-order differential objects, J>Σ−1m J and V are
quadratic forms in the tangent space to a solution. That is,
for a tangent space motion v, the quadratic form v>Vv
gives the variance in the direction v. We need not restrict
ourselves to looking at uncertainty in a single coordinate,
which would be e>j Vej .

Directions of maximum uncertainty are particularly in-
teresting:

λmax = max
‖v‖=1

v>Vv (5)

1 The Schur complement trick involves essentially row-reducing a
block 2-by-2 matrix to compute only a block of its inverse. In this case,
the block structure separates point parameters from camera parameters;
see [3, 20] for more details.



However, the Euclidean norm ‖v‖2 =
(∑

i v
2
i

) 1
2 is not

particularly natural. Notice that some of the vj are spatial
variables and other vj are rotational. Directly adding these
quantities mismatchs the units.

More abstractly, camera extrinsics are elements of
SE(3), the manifold of 3D rigid motions. Perturbations to
each camera belong to the associated Lie algebra se(3), and
our vectors v are elements of se(3)

Nc . The manifold SE(3)
itself is the direct product of SO(3) and R3, the manifolds
of 3D rotations and translations. Given norms on their tan-
gent spaces so(3) and R3, we can form a norm on se(3) by
combining them as follows:

‖(R, t)‖se(3) =
(
αr‖R‖pso(3) + αt‖t‖pR3

)1/p
(6)

where αr and αt are positive constants and p ≥ 1. The p =
2 case is tremendously computationally convenient: if R is
represented as an axis-angle 3-vector, ‖R‖2 is the natural
(geodesic) norm on SO(3). If we also choose the Euclidean
norm on R3, then up to the weights αr and αt, the induced
norm on se(3) (and hence on se(3)

Nc ) is a Euclidean vector
norm in the tangent space.

Notice that there are no natural choices of weights αr

and αt. They quantify a change of units between rotational
and Euclidean quantities. Furthermore, because SfM prob-
lems are ambiguous up to a similarity, the Euclidean units
are arbitrary. We pick weights that represent the scale of
each unit, effectively non-dimensionalizing them. Let sr
be the median distance from camera rotations to the av-
erage camera rotation [10], and let st be the median dis-
tance from camera positions to the average camera posi-
tion. Then defining a scale matrix S1 for a single camera as
S1 = Diagonal([sr, sr, sr, st, st, st]), we can write

‖(R, t)‖se(3) =

(
‖ R
sr
‖22 + ‖ t

st
‖22
)1/2

as ∥∥∥∥[ R

t

]∥∥∥∥
SE(3)

=

∥∥∥∥S−11

[
R

t

]∥∥∥∥
2

(7)

and in the product space se(3)
Nc , the norm is (using Kro-

necker product notation):

‖v‖se(3)Nc =
∥∥(INc ⊗ S−11

)
v
∥∥
2
. (8)

Going forward, we will write SNc = INc ⊗ S1.
In summary, we emphasize that there is no single natu-

ral choice for a norm on se(3)
Nc . We normalize the rota-

tional and translational components of the space by robust
estimators of the variance in those parameters to relate in-
commensurate units. Without this adjustment, scaling the
problem instance can greatly affect the resulting covariance
eigenvectors without changing the value of the cost func-
tion: scaled-down scenes yield variance almost exclusively

in rotational directions, while expanded scenes have mass
almost exclusively in translational directions.

3.4. Solving for the Eigenvectors

To visualize the dominant modes of uncertainty in an
SfM problem we wish to compute some (say Keig) of the
dominant eigenvectors of the covariance matrix. These are
the directions of largest effect within the covariance matrix.

As described in Section 3.2, we have greatly reduced
the problem size by dropping the rows and columns rep-
resenting camera intrinsics and taking a Schur complement
to factor out the 3D point parameters, leaving only camera
orientations and positions. The resulting Schur matrix (call
it Z) is far smaller, but also mostly dense. Its pseudoinverse
(which we do not compute in full) is the pseudoinverse of
the camera-parameters block of the covariance matrix.

The largest eigenvectors of Z† (that is, the dominant
modes of covariance with respect to camera extrinsics) are
the smallest non-null eigenvalues of Z. Both Z and Z† share
a nullspace corresponding to the seven-dimensional gauge
ambiguity of SfM problems: the solution is only determined
up to an arbitrary choice of orientation, position, and scale.

Consider this optimization problem to determine the
smallest eigenvector (under our chosen norm on se(3)

Nc ):

v∗ = arg min
‖S−1

Nc
v‖2=1

v>Zv (9)

With a change of variables, this becomes a Euclidean-norm
eigenvalue problem:

u∗ = arg min
‖u‖2=1

u>SNc
ZSNc

u

v∗ = SNc
u∗. (10)

That is, to find the largest eigenvectors of Z† under our
norm, we solve for the smallest (non-null) eigenvectors of
S>Nc

ZSNc
. We solve this eigenproblem using Arpack [14]

via Julia under the Hermitian no-shift smallest-magnitude
mode. Since we expect a 7D nullspace, we find Keig + 7
eigenvectors and discard the seven smallest ones.

Alternatives. We also experimented with using the
LOBPCG [13] solver, but it often failed. This was be-
cause while by construction, S>Nc

ZSNc
is positive sym-

metric definite, round-off error often causes some of the
nullspace eigenvalues to be negative. This causes an inter-
nal Cholesky factorization to fail.

We also experimented with Golub deflation [8] to define
the nullspace explicitly and then search for eigenvectors or-
thogonal to it. While elegant, we found this to be numeri-
cally problematic. The resulting eigenvectors were very low
quality, suggesting that the deflated system was stiff.



3.5. Visualizing the Uncertainty

Given a bundle adjustment solution X ∈ SE(3)
Nc , we

compute eigenvectors v1,v2, . . . ∈ se(3)
Nc as described.

Using the exp map from the tangent space to the manifold2

we can “vibrate” each mode sinusoidally:

Xk(t) = X exp [(A sinωt)vk] (11)

This gives periodic time-varying camera configurations for
each eigenvector. The amplitude A and frequency ω can be
freely adjusted until the visualization is easy to interpret.

We built a browser-based viewer to inspect our animated
output. See the supplemental for interactive demos.

4. Results
We begin this section with a gallery and a qualitative dis-

cussion of our visualizations. Then we move to quantitative
discussions: confirming the correctness of our eigenvectors
and examining runtime. We conclude with a discussion of
the eigenvalues corresponding to our eigenvectors.

4.1. Eigenvector Visualizations

Figure 2 shows some of the dominant eigenvectors of
problems from the Bundle Adjustment in the Large (BAL)
dataset [4]. Each scene point is rendered as a light blue
dot and camera centers are shown as black frusta. Modes
of uncertainty are shown as colored bars centered on each
camera. The red-blue color gradients across the bars reveal
the phase of oscillation. These static visualizations do not
show the rotational components of the uncertainty modes.
We encourage the reader to follow along with the interactive
animations in the supplemental.

Ladybug dataset The left-hand column of Figure 2
shows the largest uncertainty modes of a problem from the
BAL LADYBUG dataset. This dataset was collected by a
Ladybug device—several cameras rigidly joined together—
driven down a street. Notice that all of the modes exhibit
sets of near-parallel lines. Each one of these sets corre-
sponds to one of the Ladybug’s five cameras. As a result,
from an uncertainty perspective the scene consists of five
distinct chains of cameras on top of each other.

All of the biggest modes of this dataset are motions of
these chains. The largest mode is of translations of these
chains past each other. The second mode is flexing in the
tails of the scene. The end furthest from the viewport has
very large vertical uncertainty. The third and fourth modes
also introduce some vertical uncertainty to the main stretch
of the street. Finally, the fifth mode looks like a standing
sine wave with nodes at the corners and midpoint.

2For components in R3 the exp map is just Euclidean addition, and for
components in SO(3) it is given by the Rodriguez rotation formula.

These visualizations show us that what looked like a sim-
ple linear scene is actually a bit more topologically com-
plicated. It is composed of five loosely-coupled chains of
cameras. The ends of the scene are the least certain (and
the far end is very unstable.) The largest uncertainties are
in the relative positions of the chains, and vertical positions
are better known than horizontal ones.

Speaking practically, these visualizations suggest that in-
cluding prior knowledge about the camera rig—that cam-
eras are rigidly coupled to each other at each capture
point—could sharply reduce uncertainty in the scene.

Venice dataset The right-hand column of Figure 2 shows
the largest uncertainty modes on a problem from the BAL
VENICE dataset. Once again we can see many interpretable
features. The top of the clocktower is particularly uncer-
tain in all of the modes. Looking more closely, the four
sides of the tower are fairly rigid, but their relative scales
are poorly determined. Notice that each clocktower side
has large motions in modes one, two, and three, and that the
sides move mostly forward and back along their respective
viewing directions. The fourth and fifth modes show bend-
ing and stretching on the edges of the model: the right-hand
plaza can stretch outwards (this is easier to see in the ani-
mated supplemental), while the farthest-back cameras can
move from side to side, pivoting around the central tower.
If we wanted to improve the model, it seems that there are
no quick fixes for the uncertainty in the top of the clock
tower, or for the farthest cameras. But uncertainty in the
plaza could be quickly reduced if we could find some new
views that see both the clock tower and the left-hand build-
ing. Likewise, the scale of the right-hand plaza could be
better established by right-looking views from below the
left-hand building, which are lacking in the dataset.

1DSfM datasets Figure 3 shows two uncertainty modes
on two problems from the 1DSfM datasets [21]. These
datasets were collected in-the-wild from Flickr keyword
searches. These datasets lack the rigid structure of LA-
DYBUG, but we can still learn about the topology of the
problem. The largest modes of uncertainty in YORKMIN-
STER focus on elevated viewpoints, which are a minority
in the scene. These aerial cameras are less well connected.
The main modes of uncertainty are an “unrolling” motion
around the central spire of the cathedral and a vertical trans-
lation of the top-most cameras, so some scene properties,
such as the height of the tower, are particularly untrustwor-
thy. In TOWER OF LONDON, what looks like a homogenous
group of cameras actually behaves more like two groups.
The largest modes of uncertainty are stretches (see Figure 3)
and vertical shifts (not shown). In the stretches, the two sets
of cameras move in diverging directions.
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Figure 2: Visualizations of the five most dominant eigenvectors of two BAL problems. The blue dots are the scene structure
portion of the model. These are motionless because we have restricted our eigenvector computations to camera extrinsic
parameters. Each camera’s motion is shown by a bar through the camera center. The color gradient on each bar shows the
phase of oscillation. See the supplemental for WebGL animations which are more intuitive than static images.



YORKMINSTER TOWER OF LONDON

Figure 3: Visualizations of two dominant eigenvectors of 1DSfM scenes. The YORKMINSTER model is bending and unfurling
around the central spire. In TOWER OF LONDON we see one group of cameras shifting forward and to the right, and an
overlapping group shifting forwards and to the left.

Figure 4: The largest eigenvalue (in nondimensionalized coordinates) of each of the BAL problems. Notice that largest
eigenvalues are brittle: adding a few poorly-constrained cameras can create a new mode of large uncertainty.

4.2. Correctness

Although the symmetric eigenvalue problem has a rela-
tive condition number of one [19], finding the correspond-
ing eigenvectors is not as well posed. In fact, on some BAL
problems we have observed λmax/λmin as large as 1e30
(after accounting for gauge). While the conditioning of the
eigenvector problem is not determined by this quantity, it is
a cause for concern.

Empirically, the “eigenvectors” that we compute on
larger problems lack properties that we expect eigenvectors
to possess. Generally, a set of eigenpairs vk, λk for a ma-
trix A should satisfy at least three properties: (1) the set of
eigenvectors is orthonormal, (2) the eigenvectors have small

residuals (‖Avk−λkvk‖ ≈ 0), and (3) Avk should be par-
allel to vk. ARPACK exactly enforces the first property, but
the other two only hold on the smallest BAL problems.

The residuals problem (2) becomes less of a concern if
we look at relative residuals. Letting γ be the average of the
absolute values of the non-zero entries in the Schur matrix,
‖Av − λv‖/γ is less than 1e − 5 for all BAL problems—
often much smaller. The residuals are simply on the scale
of the entries in the matrix.

The parallel property (3) typically does not hold because
in higher dimensions most vectors are nearly orthogonal,
but this does not affect our intended use case of visualiza-
tion. We rely on a variational property of eigenvectors: they
minimize a certain optimization problem (i.e., Equation (5))



Figure 5: Runtimes for computing the 20 largest eigenvec-
tors of the BAL problems.

called the Ritz-Rayleigh quotient. The ARPACK eigen-
solver converges when it has minimized the Ritz-Rayleigh
quotient within a Krylov subspace. For all of the BAL prob-
lems, we observe that ARPACK converges to machine pre-
cision in six or fewer iterations. Furthermore, when we in-
crease the size of the Krylov subspace (from 20 to 200, on
a ≈1700 camera problem) the computation becomes much
slower, but the results are indistinguishable. This gives us
confidence that our vectors are good minimizers of the Ritz-
Rayleigh quotient within the subspace, that the subspace is
representative of the entire operator, and that our eigenvec-
tors represent directions of maximum variance.

4.3. Runtime Experiment

We implemented our method in the Julia programming
language [5]. The eigen-computations were performed with
Arpack.jl [14] linked to OpenBLAS. Figure 5 gives run-
times on a 2015 MacBook Pro with a 2.2GHz Intel i7 pro-
cessor. The runtimes include forming the reduced Schur
system and solving, but exclude file I/O operations. On
BAL problems ≈75% of the runtime is spent forming the
Schur complement matrix—mostly sparse matrix multipli-
cation. Only ≈25% is spent in eigen-computations. Even
the largest scenes run in a bit less than one minute.

4.4. Discussion: Limited Usefulness of Eigenvalues

It would be great to be able to go beyond visualizing un-
certainty to quantifying it. At a first glance, the eigenvalues
that go with our eigenvectors appear to be a useful signal.
However, this signal is confounded for several reasons.

First we note that maximum eigenvalues are brittle mea-

sures. See Figure 4, which shows λmax for each of the prob-
lems in the BAL dataset. Notice that in several cases only a
few cameras are added between one problem and the next,
but λmax increases two orders of magnitude.

Second, the issue of units sharply limits how much we
can compare eigenvalues across different datasets. We
saw in Section 3.3 that bundle adjustment problems have
a gauge. It may seem that we have already dealt with this:
the covariance matrix is initially invariant under rotations
and translations, but not under scalings of the spatial pa-
rameters. However, our units normalization enforces scale
invariance. That is, the eigensystems are invariant to all
gauge transformations.

However, our choice of units was necessarily ad hoc.
The median camera distance in one scene does not corre-
spond to the same measurement for a different problem.
Since BAL problems come in a series, it is mostly mean-
ingful to compare eigenvalues within a series. (Dickscheid
et al. [7] make this rigorous by gauge-aligning scenes that
share cameras in common before comparing covariances.)
But, looking at Figure 4, we can not necessarily say that
Trafalgar is reconstructed more accurately than Dubrovnik.
Eigenvalues can only be compared between models with the
same spatial units. This difficulty could be mitigated given
extra information to register our models to a metric scale.
There would still be an ad hoc choice about how to compare
units of rotation and translation, but the scale of the trans-
lation units would no longer be arbitrary. We leave further
quantification of uncertainty to future work.

5. Conclusion and Future Directions
This work is a foray into uncertainty-aware Structure

from Motion computation. We have focused on an applica-
tion to uncertainty visualization: by computing the largest
eigenvectors of the (Schur-reduced) covariance matrix we
can animate the dominant modes of uncertainty in a solu-
tion. These eigenproblems are numerically difficult. We
give a combination of problem size reduction, unit scaling
treatment, gauge approach, and solver that yield acceptable
quality solutions.

These visualizations provide insight into the failure
modes of reconstructions. But beyond visualizations, which
only help diagnose problems in SfM, we hope to work to-
wards using uncertainty information proactively. One idea
towards uncertainty-aware computation is that the eigenvec-
tors we compute in this paper are precisely what is needed
to form a low-rank approximation to the Mahalanobis dis-
tance on the space of camera extrinsics. This could be used
to locate new viewpoints that specifically give information
about directions of maximum uncertainty. Also, while the
absolute magnitude of eigenvalues is hard to reason about,
their relative rate of decay is a stable property that holds
meaning between datasets.
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