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Scene Summarization via Motion Normalization
Scott Wehrwein, Kavita Bala, Member, IEEE, Noah Snavely Member, IEEE

Abstract—When observing the visual world, temporal phenomena are ubiquitous: people walk, cars drive, rivers flow, clouds drift, and
shadows elongate. Some of these, like water splashing and cloud motion, occur over time intervals that are either too short or too long for
humans to easily observe. High-speed and timelapse videos provide a popular and compelling way to visualize these phenomena, but
many real-world scenes exhibit motions occurring at a variety of rates. Once a framerate is chosen, phenomena at other rates are at best
invisible, and at worst create distracting artifacts. In this paper, we propose to automatically normalize the pixel-space speed of different
motions in an input video to produce a seamless output with spatiotemporally varying framerate. To achieve this, we propose to analyze
scenes at different timescales to isolate and analyze motions that occur at vastly different rates. Our method optionally allows a user to
specify additional constraints according to artistic preferences. The motion normalized output provides a novel way to compactly visualize
the changes occurring in a scene over a broad range of timescales.

F

1 INTRODUCTION

The increasing ubiquity of video cameras, sharing plat-
forms, and processing power have driven renewed interest
in exciting applications of video, from timelapse apps to
hyperlapse [1], [2] and virtual reality capture. The popularity
of these applications is apparent from a simple search of
a video sharing site like Vimeo or YouTube. In particular,
anyone from an amateur with a smartphone to a professional
artist with expensive motion stages can set up a timelapse
capture to create a compelling visualization of changes in the
world that occur too slowly to watch in real-time.

One challenge when capturing a timelapse video is
deciding the framerate, i.e., how much to speed up time. For
example, in the scene in Figure 1, a speedup of 256x (relative
to 30 frames per second) is a good choice to illustrate the
motion of the clouds; meanwhile, the tree’s shadow and the
minute hand on the clock move even slower, and are better
viewed at 1024x. However, the people walking along the
path are aliased at either of these rates, producing strobing
artifacts and distracting a viewer from the interesting longer-
term phenomena. To convey the details of their motion, the
people should be displayed at a real time rate.

It is impossible to achieve all of these goals at once with
a standard timelapse video, which is limited to a single
framerate. Even if the framerate is allowed to vary over
time, we cannot show all of these effects because they
occur simultaneously. In this work, we visualize dynamic
phenomena at multiple timescales in a single video with
spatiotemporally varying framerate. Figure 2 illustrates our
method; we begin by decomposing a long video of a scene
into a temporal pyramid to allow for analysis of phenomena
at multiple timescales. We then estimate motion in each
timescale using optical flow and feature tracking, and finally
use graph cuts and Poisson blending to synthesize a seamless
motion-normalized output video that simultaneously shows
changes unfolding at multiple timescales. Because there may
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Fig. 1: Different portions of this scene are best viewed
at different framerates. People move in real time, whereas
clouds move more slowly; the tree’s shadow and the clock
need an even greater speedup for their motion to be apparent.

be many ways to choose content from different timescales,
we also allow a user to guide the process according to artistic
preference by specifying additional constraints.

To summarize, we make three primary contributions:

1) We demonstrate an automatic motion normalization

method that combines dynamic scene content from
multiple timescales into a single seamless video.

2) We propose to use temporal pyramids as a vehicle
for the analysis of motions occurring at multiple
timescales in a scene.

3) We present a user-in-the-loop variant of our method
that allows for expression of artistic preferences.

A successfully motion-normalized output video can
provide a more complete illustration of the motions occurring
in a scene over time. We demonstrate motion normalization
results for regular and high speed video of scenes containing
a wide range of phenomena, including waves, clouds,
pedestrians, clocks, waterfalls, sun, shadows, kites, flags,
geysers, mist, and sunbeams, among others.

2 RELATED WORK

A large body of existing work deals with analyzing, ma-
nipulating, and summarizing motion and time in videos.
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Fig. 2: Our method takes a long input video from a static camera (bottom left) and builds a temporal pyramid by repeatedly
speeding it up (left column). We then estimate motion using optical flow and tracking (middle columns) to determine where
motion occurs in the pyramid. Finally, we normalize the scene’s motion by compositing content from multiple speeds into a
seamless output video. On the left, we show one frame from each input timescale; on the right, three frames (about 50 frames
apart) from the output video. The tint colors correspond to the different levels of the pyramid. See video for full results.

Recent work has explored the extremes of spatial and
temporal scales, including magnification of tiny subpixel
motions [3] and timelapse sequences showing years-long
temporal variations [4]. In contrast, our work visualizes
temporal changes over multiple timescales at once.

Temporal sampling. One simple way to manipulate time is
to sample frames, either at a constant or a dynamic frame
rate. [5] vary the framerate of a high-speed video according
to a spatio-temporal saliency measure on the video content to
show quick motions in more detail. Similarly, in the context
of timelapse video, [6] use simple change-based metrics
to solve for a dynamic temporal sampling that highlights
or downplays changes in the scene. Both of these works
begin by oversampling temporally at capture time to provide
flexibility in global output sampling rate. We also sample at
full-video rate (or faster), but unlike theirs, our output has a
spatially-varying framerate.

Timescale analysis. Two-dimensional image pyramids are
a standard tool in computer vision [7], but the idea of
progressively downsampling is rarely applied to the time
dimension. A version of temporal pyramids was introduced
for compression and variable level-of-detail video in [8]. The
video inpainting method of [9] operates in a coarse-to-fine
manner on a spatio-temporal pyramid representation of a
video. In contrast, in our method the temporal dimension
is disjoint from the spatial dimensions: we downsample in
time but not space in order to capture multiscale temporal

phenomena that do not necessarily correspond to spatial

scales.
A two-scale temporal decomposition was demonstrated

by [10] in the context of removing jittery artifacts caused by
real-time motion in timelapse videos. This work produces
a time-lapse sequence that varies smoothly over time by
finding a spatiotemporal displacement for each pixel within

a local neighborhood. Our work can be seen as solving for a
per-pixel temporal displacement field, but the offsets span
large gaps in time with the goal of visualizing multiple
timescales, rather than focusing on a small spatiotemporal
neighborhood to visualize a single timescale smoothly.

Video compositing and temporal warping. Extensive work
has been done on compositing videos, either using graph
cuts (e.g., [11], [12]) or by first aligning videos (e.g., [13]). We
primarily focus here on work that composites seams across
time. [14], [15] create seamless video loops by choosing a
start time and period for each pixel independently, and [16]
scaled these techniques up to gigapixel panoramic videos.
[17] turn a panning video into a static panoramic video loop,
which requires shifting vertical scanlines back in time to
line up with the earlier ones. Similarly, video summarization
work such as [18] shifts detected moving objects of interest
in time and packs them into a shorter output video.

These techniques use graph cuts to solve for an output
with minimal seams or collisions. Our method uses similar
machinery, but rather than labeling an output video with
temporal offsets (shifts), we select the framerate (scale) for each
output pixel while minimizing visual spatiotemporal seams.

[19] is closely related to our work in creating videos with
spatiotemporally varying framerate. Our method differs in
automatically selecting framerates based on motion content
rather than relying on a user-supplied function; we also select
from a discrete set of vastly disparate timescales, whereas
their results show only small variations in framerate.

3 TEMPORAL PYRAMIDS

Multiscale pyramid decompositions such as the Gaussian
and Laplacian pyramids are widely used for their ability
to isolate and manipulate image content at different spatial
frequencies. This is tremendously useful in tasks that require
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providing scale invariance, as well as in scale-specific tasks
such as detail enhancement. Similarly, we propose to use a
temporal pyramid decomposition of a long video to identify,
analyze, and manipulate visual phenomena occurring in a
scene at different temporal frequencies.

A straightforward video generalization of a Gaussian
image pyramid would recursively smooth and downsample
the video in all three dimensions at once. However, temporal
changes manifest differently from spatial frequencies: a small,
thin object consists of high spatial frequencies, but its motion
may or may not be fast. Therefore, we argue that it is
important to decouple time from the spatial dimensions.

Just as with spatial pyramids, there are many possible
ways to build a temporal pyramid. As in the spatial domain,
simply downsampling frames would result in high-frequency
motions appearing aliased in longer timescales. In the tem-
poral domain, the aliasing manifests as distracting flickering
artifacts as objects appear and disappear from one frame to
the next. As in the spatial domain, filtering is key to removing
high-frequency motions before downsampling the video.

In this work, we consider a simple pyramid construction
based on frame averaging. Beginning with an input video
at full temporal resolution (e.g., 30 frames per second or
120 fps for high speed), level i of the pyramid, denoted
Pi is built by applying a 1D temporal box filter of width
2i and subsampling every 2ith frame. Figure 2 shows an
input input video at the bottom left with three levels of the
pyramid above it.

We found that a box filter worked better than a Gaussian
because the box filter allows objects to blur out more readily
by spreading a moving object’s mass evenly, rather than
concentrating mass near the center of the object’s trajectory
as a Gaussian would. The pyramid can also be viewed as
a stack of timelapse videos with different framerates. For
this reason, such a pyramid is a natural choice if we seek to
visualize motions happening at many different timescales.

4 MOTION NORMALIZATION

Merging temporal phenomena from different timescales
while still producing a natural-looking output video is
difficult. We have two main objectives for our output video:

1) Include interesting phenomena from multiple time-
scales, each unfolding at a naturally observable rate.

2) Avoid visually jarring spatial and temporal seams.

To more concretely define the subjective concept of a
“naturally observable” rate, we use pixel-space velocity as
a proxy: intuitively, an object’s motion is most naturally
observed when it is moving across the frame neither too
slowly nor too quickly. Although there is no single perfect
velocity for all motion, there is a range outside which motion
is either too small to notice or too large to be seen in detail.
For example, the shadow of the tree in Figure 1 travels
at about 0.003 pixels per frame (ppf) at 1x (i.e. real-time),
meaning it takes over 11 seconds to move a distance of one
single pixel.

However, we observe that if an object’s motion is fully
resolved in the input video, its velocity is moderate in some

level of a temporal pyramid. Because going up a level of
the pyramid speeds up time by a factor of two, an object’s

velocity at level i of the pyramid is 2i times its velocity in the
input video. So in level 10 of the pyramid, the shadow’s
velocity is 1024x faster, an easily observable 3 ppf. The
clouds—also apparently stationary at real-time—move at
about 5 ppf in level 8 of the pyramid. The people, on the
other hand, move at about 2 ppf in the input video, so at
higher pyramid levels they will first move unnaturally fast
and then eventually blur out.

To simultaneously visualize the motions of shadows,
clouds, and people, we propose motion normalization, a
procedure which combines scene content from different
levels of the pyramid that have similar screen-space velocity,
and thus different real-world velocities. A natural approach
would be to enumerate each type of motion (people, clouds,
shadows) in a video, identify its “most natural” timescale,
and combine all of them together into an output video.
However, this is challenging because the phenomena may
overlap in output space, or not completely cover the whole
output in a stationary area of the scene. Instead we begin
in the output domain and choose the pyramid level with
the “most suitable” scene content to fill it while maintaining
visual seamlessness.

4.1 Overview
We present an overview of our method here. We give
further details on the motion detection and compositing
step in Section 5, and extend the compositing to handle
user-specified preferences in Section 6.

Capture. We begin by capturing a long video at a standard
real-time framerate (e.g., 30fps). In some cases, 2-3 hours is
enough to capture multiple interesting timescales; due to the
difficulty of finding acceptable composites under significant
(e.g., day/night) illumination changes, our longest videos are
limited to about 16 hours. We demonstrate results on videos
we captured with a GoPro camera, as well as videos saved
from Internet streaming sources, such as YouTube Live.

Timescale Creation. Let I0, the input video, be the real-
time timescale. Timescale Ik+1 is constructed recursively by
temporally blurring and downsampling Ik. For efficiency,
we use a box blur of width 2 frames, so that timescale Ik has
speedup 2k and duration 1

2k compared to the input video.

Clip Selection. The user selects a subset of the timescales Ik,
and from each timescale selects a clip of equal frame length.
A typical workflow for this selection is to begin by watching a
timescale with large speedup to see what phenomena appear,
then fine-tuning the selected timescale to the desired viewing
speed for those phenomena. Meanwhile, other, faster-paced
phenomena are often visible at that timescale and suggest
a choice of the next slower timescale, along with a starting
point for the input clip. In this way, the user can efficiently
explore the dynamic phenomena at a range of timescales,
choosing particular moments to highlight in the composite.
In our informal experiments, a typical clip selection session
results in 2–4 input clips and takes 5–10 minutes.

Motion Detection and Compositing. Given a short clip from
each of a few input timescales, our motion normalization
method first detects motion in each clip, then composites
moving content into a visually seamless output video. The
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next section goes into detail on how we pose this as a labeling
problem and solve it using graph cut optimization. After
compositing, we apply a further Poisson blending step to
further remove artifacts caused by spatiotemporal seams.
These steps are detailed in Sections 5.1–5.4.

User Input. Finally, Section 6 describes an optional step that
allows a user to provide input to the compositing process,
specifying additional constraints on which output pixels
come from which input timescale.

5 METHOD

Having captured a video, built a pyramid of timescales,
and selected clips from different timescales, our task is to
synthesize a single output that composites dynamic content
from each input clip. We pose the synthesis as a labeling
problem, reminiscent of the Photomontage framework [20].
Each voxel (indexed by location and frame) in the output
video takes the value of the corresponding voxel in one
of the input videos. With this constraint, we only need to
find a label for each output voxel specifying which input
its value comes from. Posing the problem this way allows
us to use graph cut optimization methods [21] to solve for
a labeling that satisfies our motion normalization objective
while maintaining smoothness.

Following the usual graph cuts formulation, we define
an objective function on a 6-connected 3D grid graph whose
nodes correspond to output video voxels. Data costs are
associated with each voxel, and smoothness costs apply to
the edges between neighboring voxels. In our case, the data
cost encodes the desirability of choosing each voxel from
each input video, which we derive from motion estimates
(Section 5.1). The smoothness cost (Section 5.2) penalizes
noticeable seams in the output. The individual terms of the
cost function are summarized in Table 1, and the entire cost
function is defined below in Equation 5.

5.1 Data Cost
Our cost function’s data term, defined per input voxel, is
based on optical flow and sparse tracks computed on the
input clips (we also refer to these clips as “timescales”, as
they come from different levels of a temporal pyramid).

Flow data cost. We wish to assign a high cost to undesirable
scene content—where motion is too slow or fast—and low
cost to desirable scene content, where motion is moderate. To
measure the speed of motion, we use the magnitude of op-
tical flow vectors computed using [22]. We also normalize the
magnitude to its equivalent at 540p to adjust for resolution
differences.

To assign a cost based on flow magnitude, a simple ap-
proach would be the distance to a chosen target flow velocity.
We found that a more flexible approach is to compute a
clipped distance to the closest point in a reasonable range
of velocities; in our experiments we used the range from 4
to 12. Formally, if the flow magnitude at an input voxel p
in timescale ` is denoted M(p, `), the flow-based data cost,
shown graphically in Figure 3, is defined as:

Cflow(p, `) = max(0,min(8, abs(Mp,` � 8)� 4)) (1)
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Fig. 3: Cflow as a function of flow magnitude

The cost of velocity zero is less than that of very high
velocities because no motion is visually preferable to aliased,
overly fast motion. We found this cost to work for a wide
variety of phenomena. We believe this is because pixel-
space velocity is a key determining factor in observability
of motions, and because the sampling of timescales in our
experiments is typically sparse enough that most motions
fall into the low-cost range in only one timescale. Based on
the phenomena being visualized and/or a user’s preferences,
other intervals or cost functions could be used instead.

Track data cost. Current two-frame optical flow methods
applied to consecutive pairs of frames do not necessarily
produce temporally smooth outputs. To help leverage infor-
mation across more frames, we add a cost based on the long-
term tracking algorithm of [23]. This provides a relatively
sparse set of tracked points, but the robustness of the tracking
is markedly better than optical flow because it is able to use
more than two frames.

If a moving point is detected and tracked somewhere in
an input timescale, some motion is occurring at that timescale
and we want to encourage it to be included in the output. We
compute tracks on each input timescale, then filter out tracks
whose duration is too short and whose motion is too slow.
We discard any track with a duration less than 10 frames or
an average speed of less than 1 ppf (again, normalized to
540p image resolution). We could more narrowly filter tracks
by velocity, but we found that in practice, points moving
faster than a visually acceptable rate were not successfully
tracked over enough frames to be included.

For each voxel in a given timescale containing a track, we
add a penalty to all other timescales at that voxel. Let T (p, `)
be a binary indicator that is 1 if a tracked point appears at
voxel p in video `. The track data cost for a voxel p is:

Ctrack exists(p, `) =
X

`0 6=`

T (p, `0) (2)

In the overall cost function (5), this term is weighted by �2,
which determines the strength of the penalty.

5.2 Smoothness Cost
When content from multiple timescales is naively combined,
the result will generally look unnatural because the scene’s
appearance has changed over time; moving objects may
appear or disappear, and lighting changes may create highly
visible seams, either in space or time. To discourage these
unnatural-looking seams, we begin with the smoothness
term from [20] and augment it with an extra penalty for
breaking an edge between two points in a track. We use the
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Weight Value Term Type Penalize the labeling if ...
�1 5 Cflow(p, `) unary optical flow at voxel p is too fast or too slow in timescale `

�2 50 Ctrack exists(p, `) unary a tracked point exists at voxel p in some other timescale `0 6= `

�3 100 Ccolor grad(p, q, `p, `q) binary colors and gradients of timescales `p and `q are visually dissimilar at p and q

�4 10,000 Ctrack smooth(p, q, `p, `q) binary a tracked point appears or disappears due to a change in label between p and q

�5 10,000 Cuser(p, `) unary a user constraint has been specified at voxel p in some other timescale `0 6= `

TABLE 1: A summary of the terms in our cost function. We also include the weights we used in our experiments.

“Color + Gradients” variant of the Photomontage smoothness
term, defined here for completeness. The cost of assigning
voxels p and q labels `p and `q , respectively, is based on the
RGB color and gradients of the input videos:

Ccolor grad(p, q, `p, `q) = Ccolor + Cgrad (3)

where

Ccolor = ||I(p, `p)� I(p, `q)||+ ||I(q, `p)� I(q, `q)||
Cgrad = ||rI(p, `p)�rI(p, `q)||+ ||rI(q, `p)�rI(q, `q)||

Intuitively, if it is hard to distinguish between input `p and
input `q on both sides of the seam, then it should be hard to
tell that the labeling has switched from one to the other.

This smoothness term does a good job of finding the best
places to switch labels, but it reasons at a very low level.
To further discourage semantically jarring artifacts, such
as disappearing objects, we again make use of the sparse
tracking data discussed in the data term. In the context of
the smoothness term, we wish to discourage the labeling
from changing labels where a tracked object appears—a
label change would correspond to the tracked object either
appearing or disappearing. To discourage this, we add a new
set of edges to the graph following the trajectory of each
track. On these edges, the smoothness cost is the XOR of the
track indicator function for the two points:

Ctrack smooth(p, q, `p, `q) = T (p, `p)� T (q, `q) (4)

In other words, a cost is paid on track-derived edges if exactly
one of p and q shows the tracked object, penalizing a change
of label along the trajectory of a tracked point. Once again,
this binary cost is scaled by a weight �4.

5.3 Optimization
Putting the entire cost function together, we have

C(L) =
X

p

Cd(p, `p) +
X

p,q

Cs(p, q, `p, `q) (5)

where the data and smoothness costs are defined as:

Cd(p, `) = �1Cflow(p, `) + �2Ctrack exists(p, `) (6)

Cs(p, q, `p, `q) = �3Ccolor grad(p, q, `p, `q)

+ �4Ctrack smooth(p, q, `p, `q)
(7)

The individual terms are summarized in Table 1, along
with the values we used for �1,�2,�3,�4. These parameters
were set empirically: flow is noisy but useful where no tracks
exist so its weight is small; tracks are more reliable, so they
get a larger weight.

To find a labeling that approximately minimizes this
objective function, we use the multi-label alpha-expansion

package by Veksler and Delong.1, which uses the min
cut/max flow approach from [24], [25].

5.4 Gradient-Domain Refinement
Finally, we apply Poisson blending using the method of [26]
to minimize the visual effect of the seams in the output. The
aim here is the same as [20], but our implementation differs
for efficiency reasons. We first create a 3-dimensional target
gradient field G(x, y, t)—the gradient field we would like
the output to satisfy, copied from the gradients of the input
videos according to the labeling computed by the graph cut
optimization. Then, we aim to solve the differential equation

G(x, y, t) = rF (x, y, t) (8)

for an output video F whose gradient matches G as closely
as possible. To solve this in a least squares sense, we solve

r2F = div G (9)

The finite differences approximation scheme detailed by [26]
produces a large sparse linear system, each row of which (for
a 3-D video) corresponds to a voxel, with 6 on the diagonal
and �1 in the column corresponding to each neighbor in the
general case. Where some neighbors are out of bounds, the
von Neumann boundary conditions imply that the diagonal
is reduced to the number of in-bound neighbors.

As derived, this matrix is rank-deficient, as all columns
sum to 0. However, if we project this null space out of
the right-hand side by subtracting the mean, we can use a
conjugate gradients-style solver to arrive at a solution that
is as close as possible to the desired gradient field. This
is effective because CG will never change the component
of the solution vector in the direction of the nullspace of
the matrix [27]. We use the output from graph cuts as a
good initial guess, and solve this system using stabilized
biconjugate gradients as implemented in SciPy.

6 USER INPUT

Normalizing pixel-space velocity is one reasonable heuristic
for how to blend scene content from multiple timescales. In
our system, a user chooses the clips of each input timescale
to be included. However, a user may also desire more control
over which scene content comes from which timescale.

User control is useful for several reasons. First, when mul-
tiple timescales exhibit motion at the same spatial locations,
a user can choose which timescale should be displayed. For
example, cloud motion often produces interesting effects at
multiple timescales (see Section 7.2). Second, an artist can

1. http://vision.csd.uwo.ca/code/ It was important to use Version
3.04 of the MAXFLOW subpackage, which includes a change that allows
it to run stably on large graphs such as ours.
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Fig. 4: The user can scrub through each input timescale and
paint annotations over a range of frames indicating extra
constraints on where and when a given input timescale
should be chosen to appear in the output. To create an
annotation, the user selects a timescale from the thumbnails
on the right, sets a range of frames, then paints the pixels
that should be included from the selected frames.

achieve creative effects that do not strictly normalize scene
motion. For example, the effect of speeding blurry people
might illustrate the size of the crowds passing through a
scene better than a short clip of the people walking in real
time. Finally, the artist can correct for possible shortcomings
of the motion estimation techniques used by the automatic
system. The motion of flowing water is a challenging case
for optical flow, so the automatic motion normalization may
not choose the best timescale.

To provide user control, we built a prototype interface
that allows a user to paint annotations on each timescale,
indicating that the painted voxels should strongly prefer
the label of the video in which they are painted. To make
the process efficient, the user can specify a range of frames
over which a given constraint should apply. A screenshot of
the interface is shown in Figure 4, and a demonstration is
provided in the video.

The constraints are then incorporated into the optimiza-
tion described in Section 4 as an additional data term
analogous to Ctrack exists. If U(p, `0) is a binary indicator for
voxel p being painted in input `, then we add the following
term inside the summation of the data cost (Equation 6):

Cuser(p, `) = �5

X

`0 6=`

U(p, `0) (10)

7 RESULTS

We ran our motion normalization system on eight datasets
from three different sources: a GoPro camera on a tripod,
live webcams, and very long YouTube videos. Notably, input
data can be captured with only a tripod, an inexpensive
video camera, and a spare battery pack. After capturing
a video, we compute a temporal pyramid as described in
Section 3. Using the pyramid to explore the activity in the
video, we select equal-length input clips from a subset of
the pyramid levels to normalize. The datasets, their sources,
and the timescales we selected for our results are detailed in
Table 2. Figure 5 shows one output frame for each dataset,
and the same frame shaded to show the input source for

each pixel. The timescales are labeled in order of increasing
speedup as red, green, blue, and yellow. We invite the reader
to view our video to see the results in full.

7.1 Automatic Motion Normalization Results
Figure 2 shows several frames from an automatic motion
normalization result on the MILL dataset. The children
running across the foreground are shown in real time, while
parts of the flowing water are sped up. The sky is accelerated
256x to show cloud motion, and the grass on the bottom-right
corner shows a shadow from the 1024x timescale towards the
end of the video as the sun sets behind the trees on the right
of the frame. Motion estimation is often noisy, especially at
faster timescales, but the graph cuts optimization enforces a
smooth output. Frames from several other fully automatic
motion-normalized results are shown in the top row of
Figure 5, and full clips are included in the video.

In PLAZA, the system achieves all three goals set out
in Figure 1: people are shown walking at real time, while
the tree shadow and clock move at a moderate pace at
1024x. The wispy clouds in the sky are not easily detected by
motion estimation, but part of the cloudy sky appears at its
own timescale and the blended result looks natural. BEACH
depicts a variety of activities, including people, kites, waves,
and clouds. The automatic result includes two timescales, a
fast one capturing the moving clouds and a slower one that
shows people, waves, and a large ring kite. In SLOPE, the
sky and ground are assigned different timescales; the puffy
clouds in the foreground drift visibly while the people walk
in real time. In GEYSER, clouds move at a faster timescale
while the geyser and water are shown at 1x. Some slowly
rising steam in the background is shown at a more moderate
speedup. Rising steam in the 64x timescale (shaded blue)
poses a challenge because it is pseudo-periodic: it smooths
out spatially but flickers temporally and does not blur out.

7.2 User-Guided Results
In some cases, interesting motions occur in the same region in
more than one input clip. An example is SLOPE: at 256x, the
puffy early afternoon clouds drift across the sky, but at 1024x
the sky becomes cloudier and more textured as the sun sets.
Either of these might be desired by an artist, but changing
illumination makes them difficult to blend without visible
artifacts. Figure 5 shows a frame in which a small block of the
much faster sky appears, causing distracting motion artifacts
in the video despite the single frame looking seamless. With
our user interface, an artist can easily override the automatic

Dataset Source Length (h:m) Timescales
ATRIUM GoPro 8:52 8x, 64x, 4096x
BEACH YouTube 4:03 1x, 4x, 16x, 1024x
CATER Webcam 16:08 1x, 16x, 256x, 1024x
DAM GoPro (120fps) 0:41 0.25x, 1x, 64x
GEYSER YouTube 2:50 1x, 4x, 64x, 1024x
MILL GoPro 7:12 1x, 16x, 256x, 1024x
PLAZA GoPro 2:45 1x, 256x, 1024x
SLOPE GoPro 7:47 1x, 16x, 256x, 1024x

TABLE 2: List of datasets. The timescales reflect the input
clips we chose for our experiments, but other choices are
possible. Speedups are relative to 30fps, the output framerate.
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Fig. 5: Example results from our eight datasets. We show one output frame and one frame of the labeling for each result.
Note that the labeling is allowed to change throughout the output; see the video for full results.

Fig. 6: Users can apply annotations to completely change
which sky is chosen (left), or clean up small artifacts where
skies are mixed (right; compare to the automatic result in
Figure 5). In this case, the annotations were applied across
the whole video, and took less than 30s to create.

system (e.g., to prefer the faster sky) or clean up artifacts due
to competing motion in different timescales. Figure 6 shows
two sets of annotations for SLOPE and a frame of the resulting
output. With less than 30s of annotation effort the artist can
swap which timescale is displayed in the sky region.

Figure 5 shows additional annotated examples. In some
cases, such as CATER and DAM, the automatic result looks
seamless but could show more timescales. With very little
annotation effort we can increase the number of timescales
depicted. We captured DAM at 120FPS, so the slowest
timescale is 0.25x; with a high-framerate input, our method
can simultaneously slow down fast things and speed up slow

things. The result includes slow-motion water, a pedestrian
on the bridge, and fast-moving clouds. In ATRIUM, people
walk through the left side of the hall at 8x while afternoon
sunlight sweeps across the scene at 4096x; the sharp illumi-
nation changes make for a challenging compositing problem,
but using annotations yields a plausible result. The automatic
method gracefully falls back to a single timescale, equivalent
to a standard timelapse with frame averaging.

7.3 Additional Experiments

Pyramid Sampling. We ran our method with pyramids
constructed without any temporal prefiltering; results are
included as supplemental video. The method performs
similarly on some datasets, but temporal aliasing artifacts
throw off the motion estimation and introduce distracting
jitter into some results. In MILL, some clouds in the top left
of the frame briefly flicker in, creating a distracting seam in
the sky. Similarly, in PLAZA the people on the right half of
the walkway appear aliased.

Track Costs. To understand the importance of the unary and
smoothness track costs, we experimented with leaving out
the unary track cost (�2 = 0), the smoothness track cost
(�4 = 0), and both (�2 = �4 = 0). The results are included
in the supplemental video.

The unary track term has a large effect on many results
due to temporally inconsistent flow estimation: the graph cut
step tends to smooth over inconsistently detected motions
and not include them. Tracks add temporal robustness
to ensure that such consistent motions are detected and
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included in the output. For example, ATRIUM misses slower-
scale people; BEACH is missing cloud motion in the sky; the
running children in MILL are occluded by the moving water.

The smoothness track term has a much smaller effect,
but does occasionally come into play. Often, the unary track
term is significant enough to ensure that tracks are present;
the smoothness track term helps when one tracked object
attempts to occlude another. Datasets where this term makes
a difference include SLOPE, where overlapping cloud motions
conflict without the track smoothness term, and in ATRIUM,
where the number of disparate components from slower
timescales at the beginning of the video is reduced.

7.4 Runtime
The automatic result for PLAZA has 128 frames at 960x512,
and takes about 4 hours on a workstation with dual 3.4GHz
Intel Xeon E5 v2 CPUs and an nVidia GeForce Titan GTX.
The full breakdown for PLAZA is as follows:

• Flow: 158 minutes (parallel on 32 cores)
• Tracking: 49 minutes (GPU implementation)
• Graph cuts: 129 minutes (single threaded)
• Poisson blending: 25 minutes

Importantly, flow and tracks can be precomputed for a given
set of input clips. The user can then edit the compositing
result using the interface, re-running only the graph cut and
blending stages to create a new result. A hierarchical graph
cut scheme as used in [17] could accelerate the graph cut
stage, while more efficient flow, tracking, and Poisson solving
algorithms could also vastly improve runtime.

7.5 Discussion and Future Work
Higher-level motion estimation techniques and/or semantic
information could help resolve conflicts between motions
at different timescales, such as those seen in SLOPE. More
sophisticated pyramid construction techniques could detect
and remove motions at each level before computing the next
to avoid artifacts when quasi-periodic motions such as flags
flapping (BEACH) and rising steam (GEYSER) fail to blur out
at higher pyramid levels.

Dramatic illumination changes, e.g., day to night, make
seamless synthesis very difficult, limiting the range of
timescales that can be normalized. Future work could inves-
tigate the use of appearance transfer or illumination analysis
techniques (e.g., [28], [29]), with the goal of normalizing
phenomena that unfold over days, months, or years. Another
direction for future work is to provide semantic-level artistic
control, for example by allowing artists to specify a target
velocity per object category.

8 CONCLUSION
We proposed a method that simultaneously visualizes mo-
tions across several timescales. We accomplish this by analyz-
ing motion in each level of a temporal pyramid, combining
content from different pyramid levels using graph cuts. We
create compelling motion-normalized visualizations with
spatiotemporally varying framerate, optionally incorporating
artist input specified via a simple user interface. Future
work has the potential to handle additional types of motion,
provide higher-level control via semantic understanding, and
generalize to even longer timescales.
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