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Abstract

Many image editing techniques make processing deci-
sions based on measures of similarity between pairs of pix-
els. Traditionally, pixel similarity is measured using a sim-
ple L2 distance on RGB or luminance values. In this work,
we explore a richer notion of similarity based on feature
embeddings learned by convolutional neural networks. We
propose to measure pixel similarity by combining distance
in a semantically-meaningful feature embedding with tradi-
tional color difference. Using semantic features from the
penultimate layer of an off-the-shelf semantic segmenta-
tion model, we evaluate our distance measure in two im-
age editing applications. A user study shows that incor-
porating semantic distances into content-aware resizing via
seam carving [2] produces improved results. Off-the-shelf
semantic features are found to have mixed effectiveness in
content-based range masking, suggesting that training bet-
ter general-purpose pixel embeddings presents a promising
future direction for creating semantically-meaningful fea-
ture spaces that can be used in a variety of applications.

1. Introduction
Following on rapid advances in image recognition [21],

the applicability of deep convolutional neural networks has
broadened to encompass a diverse range of tasks in com-
puter vision and image processing. One reason for this
wide-ranging success is the versatility of the features ex-
tracted by image classification networks. CNN architec-
tures originally developed for image classification have
been shown to produce useful image-level feature embed-
dings with applications in image retrieval [22], fine-grained
recognition [8], and visual product search [3]. Meanwhile,
CNN architectures have also been rapidly generalized to
make dense predictions, for example semantic segmenta-
tion and instance segmentation [28].

In this paper, we begin to investigate the question of
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Figure 1: An input image (a) is resized to 80% of its origi-
nal width by seam carving using the standard RGB energy
map (b) and the proposed RGB/semantic combined energy
map (c). The legs and overall shape of the statue are pre-
served due to the sharp difference between the statue and
the background in semantic feature space.

whether semantic feature embeddings at the per-pixel level
can be similarly generalized from semantic prediction tasks
to become useful for other applications. Where image re-
trieval was a natural showcase for semantically-meaningful
image level features, we investigate image editing tasks as
a testbed for semantic pixel features.

Our key observation is that at the core of many image
editing techniques is a measure of similarity between pix-
els. Many algorithms rely on image gradients, smoothness
terms, nonlocal methods, and many other notions that boil
down to measures of similarity or difference between pix-
els or patches. We aim to enrich these comparisons using
semantic information from CNN models. Specifically, we
use semantic pixel features from the second-to-last layer of
an off-the-shelf semantic segmentation model to augment
the notion of pixel similarity that lies at the core of sev-
eral image editing applications. In this work, we try out
semantically-augmented pixel distance metrics in two im-
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age editing applications: seam carving [2] and range mask-
ing. We find that off-the-shelf pixel features make notice-
able improvements in seam carving results, while masking
results are mixed. Figure 1 shows the effect of incorporating
semantics into the seam carving application.

2. Related Work
Various prior works have begun to examine more fine-

grained properties and applications of the image features
learned by image recognition models. In particular, fea-
ture maps from multiple layers of image recognition net-
works capture meaningful notions of perceptual similarity
[26] and image style [12]. These properties have been used
to generate and compare images via network inversion [12]
and via loss functions for feed-forward image generation
models [15, 10]. Our work aims to leverage this same fea-
ture richness in image editing applications, but on an in-
dividual pixel level by using features from pixelwise pre-
diction models (i.e., from the “decoder” of a semantic seg-
mentation network), rather than using only features from
the “encoder” recognition network.

Although per-pixel embeddings have been leveraged for
traditional image and video segmentation as well as se-
mantic segmentation [16, 13, 6, 18, 14], the utility of fea-
tures beyond direct semantic applications remains less ex-
plored. In the image editing domain, Yang [24] used
learned edge detectors to modulate the edge confidence in
edge-preserving filtering, reasoning that edge confidences
are learned from semantically-informed human judgments.
Other specialized learning-based approaches have been
used for editing specific image content such as faces and
hair [19] or illumination estimation for object insertion [11].
Yan et al. [23] addressed exemplar-based image retouch-
ing with deep neural networks, but their approach does not
leverage semantics from pre-trained convolutional models,
opting instead to use a non-convolutional network to regress
parameters of a task-specific color transformation model.

In contrast to these special-purpose techniques, we take
a more generic approach: we use semantic feature em-
beddings alongside traditional color-based pixel distance
metrics to capture a notion of pixel similarity that can be
used in a wide range of applications. Recent progress has
been rapid on image editing tasks where good benchmark
datasets are available, such as super-resolution [17], de-
noising [25], and image retouching [5]. We focus our ef-
forts on two other editing tasks that seem less amenable
to learning-based approaches and have not seen as much
progress: content-based image resizing using seam carving,
and parametric range masking.

Prior work on content-based image resizing removes
connected seams of pixels chosen using a gradient-based
energy map [2]; Dong et al. [9] augmented this approach us-
ing image-level similarity measures. Rubinstein et al. [20]

generalized seam carving to video and introduced “forward
energy” to account for changes in the energy map upon re-
moval of seams. The failure modes of these approaches
tend to be where the low-level energy map does not fully
capture the perceptual effects of removing a seam; this of-
ten occurs when semantic edges do not coincide with image
edges. Our work aims to mitigate these failure cases by
using a richer energy map that incorporates semantic infor-
mation in addition to low-level color gradients.

Image editing programs such as Lightroom [1] and dark-
table [7] provide users with the ability to generate range
masks (or parametric masks), including pixels in a mask
based on color or luminance similarity to a selected pixel.
Although we are unaware of any papers describing this sim-
ple technique, we extend the approach to use semantically-
augmented similarity as a criterion for inclusion in a mask
instead of only luminance or color.

3. Method
We propose to use pixel feature embedding vectors in ad-

dition to color values to compute distances between pixels
in image editing applications. In this section, we describe
how this general approach can be applied in two image
editing applications: Seam Carving and parametric mask-
ing for image editing. The key idea in both applications
is to augment a traditional pixel distance metric (i.e., RGB
Euclidean distance or difference in the luminance chan-
nel) with a distance in semantic feature embedding space
to incorporate a higher-level notion of similarity into low-
level image editing tasks. Thus far we have focused only
on using an off-the-shelf pretrained semantic segmentation
model to extract per-pixel embedding feature vectors, leav-
ing the training of purpose-built pixel embeddings for future
work.

3.1. Semantic Seam Carving

The seam carving method proposed by Avidan et al. [2]
removes “seams”—connected strings of pixels, one from
each row or one from each column—in order to change the
aspect ratio of the image without simply cropping or scal-
ing the image. Their method aims to minimize disruption
to the image content by choosing seams with minimal en-
ergy, according to an energy map calculated based on image
gradients. Formally, the energy of a pixel is the sum of the
horizontal and vertical image gradient norms

ergb(I) = ‖
∂

∂x
I‖+ ‖ ∂

∂y
I‖, (1)

where I is the image to be retargeted and ‖ · ‖ is a chosen
norm (we used theL1 norm in our experiments). A dynamic
programming algorithm is used to find the lowest-energy
seam for removal, where the energy of a seam is the total
energy at all pixels in the seam.



(a) Original Image (b) ecombined

(c) Resized using ergb (d) Resized using ecombined

Figure 2: An example input with its semantic label map,
resized to 80% width using ergb and ecombined. Notice that
in the ergb result, pixels are removed from the flower in-
stead of from the foliage in the left side of the image. When
semantics are considered, the foreground subject is better-
preserved in the resized image.

The intuition is that seams crossing strong image edges
are most likely to be noticeable when removed, so seams
with least energy should be removed first. We extend this
intuition to semantics: seams that cross boundaries in se-
mantic category are more likely to be noticeable as well. A
naı̈ve approach might use the semantic label map from a se-
mantic segmentation network (e.g., [28]), assigning a high
cost to seams that cross changes in semantic label. How-
ever, the label maps are often not pixel-accurate at object
boundaries, resulting in artifacts when seam carving. This
approach is also limited to semantic categories that are pre-

(a) Original Image (b) ecombined

(c) Resized using ergb (d) Resized using esemantic

(e) Resized using ecombined

Figure 3: An example input with its semantic label map,
resized to 80% width using ergb, esemantic, and ecombined.
The image resized with ergb is unaware of the semantic sig-
nificance of the edges between background and foreground,
so the dog’s shapes is not preserved well. The image re-
sized using esemantic displays a more noticeable artifact in
the continuity of the crack in the wall, because the color dif-
ferences are less heavily weighted. The combined energy
map achieves a balance between the two.

dicted by the network.
To incorporate semantics in a more flexible way, we pro-

pose to use semantic feature embedding vectors in place of
RGB vectors. Given a semantic feature map S, where each
pixel is a d-channel semantic feature vector, the semantic
energy map is

esemantic(S) = ‖
∂

∂x
S‖+ ‖ ∂

∂y
S‖. (2)

Because the goal of seam carving is to minimize visual
impact, we found that using only semantics gave poor re-
sults in some examples, especially where an object or back-
ground with uniform semantics exhibits distinctive structure
or texture (e.g., Figure 3). We found that the best results



(a) RGB Image (b) ergb (λ = 0.0)

(c) esemantic (λ = 1.0) (d) ecombined (λ = 0.2)

Figure 4: An input image and three example energy maps.

were achieved using a weighted combination of the two en-
ergy maps:

ecombined(S, I) = λesemantic(S) + (1− λ)ergb(I) (3)

Figure 4 shows an example input image and three energy
maps produced with λ = 0.0, 1.0, and 0.2. All results for
ecombined in this paper are produced using λ = 0.2, which
we found to maintain sharp details present in RGB while
considering important semantic boundaries that may be less
prominent in RGB.

With our combined energy map, we proceed with the
seam carving algorithm as presented in [2]. We also make
use of the “forward energy” approach proposed by Rubin-
stein et al. [20] to take into account changes in the energy
after removal of a seam. We use forward energy in all our
experiments.

3.2. Semantic Range Masking

Another use case for semantic pixel feature embeddings
is an image editing technique known by various names in-
cluding Luminosity masking, range masking (in Lightroom
[1]) and parametric masking (in Darktable [7]). The ba-
sic idea of all of these techniques is to create a mask or
selection containing all pixels within a user-specified dis-
tance of a given pixel or value. For example, a luminosity
(or luminance) mask might allow the user to choose a pixel
and create a selection of pixels whose luminance is less than
0.25 different; given such a mask, editing operations such as
exposure adjustment or contrast enhancement can be selec-
tively applied to different regions of the image. For exam-
ple, Darktable allows a user to create masked adjustments
based on luminance or any color channel in various color
spaces [7].

As in seam carving, the most obvious approach to us-
ing semantics for masking is to directly use the label map
to segment the image, but inaccuracy around edges makes

(a) Image with pixel selected (b) Semantic distance

(c) Luminance distance (d) Semantic-only mask

(e) Luminance-only mask (f) Combined range mask

Figure 5: An overview of our range masking approach. All
pixels are compared to the selected pixel (a) in semantic fea-
ture space (b) and luminance space (c). Range masks result
from thresholded distances in semantics (d), luminance (e),
and a weighted combination of the two (f).

semantic segmentation outputs ill-suited for photo editing
purposes. Instead, our approach is to again use semantic
feature embeddings to enrich the notion of pixel similarity
when computing range masks to make selections that are
more semantically coherent. Figure 5(a–c) shows an input
image with a pixel selected and the distance of each other
pixel to the selected pixel in luminance (b) and semantic
feature space (c).

As in the seam carving application, we found that the
most effective approach was a distance metric based on a
weighted combination of the traditional distance (in our ex-
periments, we used luminance) and semantic feature em-
bedding distance (illustrated in Fig. 5(f)). Because differ-
ent images have different characteristics, we found it most
useful to provide the user with control over the trade-off be-
tween luminance and semantic distance.

The user provides an input image I and selects a pixel
index x to base the mask on. Sliders allow the user to
choose the weight λ between luminance and semantics, and
a threshold τ on distance. We start by computing a lumi-
nance map L and a semantic feature map S. Then, the pixel
at index p is included in the mask if the following condition



Figure 6: Our prototype user interface for range masking.
The sliders control the τ and λ parameters in Equation 4.

is satisfied:

λ‖S(p)− S(x)‖+ (1− λ)‖L(p)− L(x)‖ < τ (4)

We built a prototype user interface, shown in Figure 6,
that allows the user to select a pixel by clicking a point,
choose a weight between luminance distance and semantic
distance, and choose a threshold on the distance to be in-
cluded in the mask.

3.3. Implementation Details

We extract semantic embeddings from a publicly avail-
able pre-trained semantic segmentation model [28]. We use
the ResNet101dilated encoder and a PPM DeepSup
decoder trained on the ADE20k dataset[27]. We find that
models trained on ADE20K work better than those trained
on Pascal VOC, likely because ADE20K has more classes
and therefore a richer semantic representation of a wide va-
riety of objects and scenes.

We extract features from the second-to-last layer, yield-
ing a (height × width × 512) feature map. For efficiency,
we used random projection [4] to reduce the dimensional-
ity of the feature vectors from 512 to 128 in the case of
the masking application. We found that for the interactive
masking application where distances must be recomputed
with each movement of the slider, efficiency gains make for
a substantially better user experience, while the quality of
the results was only barely affected.

4. Results and Discussion
Evaluating image editing tasks like retargeting and range

masking is challenging since the notion of ground truth is
often subjective. We found that incorporating semantic fea-
ture distances into seam carving resulted in results that were

Input image RGB energy Combined energy

Figure 7: Example seam carving results. The combined en-
ergy map does a better job of preserving semantically sig-
nificant objects in the scene.

often better and rarely worse than the baseline RGB ap-
proach. The range masking results were less compelling
relative to the baseline, performing better on some images
and worse on others. We believe that lower-dimensional
feature embeddings trained on a proxy task have the poten-
tial to improve results in a wider variety of applications.

4.1. Semantic Carving

Figures 1 and 7 show a few qualitative results from our
seam carving experiments. In each case, the energy map
using combined RGB and semantic feature distances results
in an output that shows a less-distorted representation of
the subject of the image. This results from the energy map
placing a higher cost on semantically-meaningful edges in
the image and discouraging seams that cross those edges,
such as the edge between the ground and the child’s arm in
Fig. 7, or between the trees and the statue’s leg in Fig. 1.

To evaluate our method quantitatively, we performed a
small user study to determine whether humans prefer im-
ages resized using the proposed semantic seam carving ap-
proach or the traditional RGB energy map. We chose 20 im-
ages at random from the photography-oriented MIT-Adobe
FiveK dataset[5] and ran both the proposed semantic carv-
ing method and the traditional seam carving method on each
image to resize it to 80% of its original width.

Each of 10 participants was shown the labeled original
image; the two resized images were displayed in a random
order. Tasked with selecting the image that best represented
the original image, participants were given the option to se-
lect a preferred output, select both if they were equally good
representations, or select neither if both results were poor
representations of the original. Overall, the results produced
with semantic carving received 145 votes, while RGB seam



Figure 8: Results on each of the 20 images in our user
study. Semantic indicates votes for the result using the
combined semantic/RGB energy map; both indicates both
images were considered acceptable; neither indicates that
neither image was acceptable, and seam indicates that the
RGB-only energy map was preferred.

carving results received 69 votes. The vote breakdown for
each individual image is shown in Figure 8.

4.2. Semantic Masking

We found that incorporating semantic features into range
masking was helpful in some images, but detrimental in oth-
ers. Figure 9 shows two example images with a pixel se-
lected and example masks generated using luminance only
and our combined distance. In the arch image (left column),
the combined distance does a slightly better job of omitting
bright pixels that are not part of the sky, though some pix-
els on a person’s white shirt remain unmasked. The image
of a boardwalk (right column) is similar: more of the non-
sky pixels on the walkway are included with the sky when
semantic features are included in the distance.

Landscape images with stark semantic contrasts tended
to show more improvement than than images with clear sub-
jects, even when the subjects were distinct semantic objects
against a background. Even in images like the mountain
from Fig. 5, the semantic features did not seem to cap-
ture the important and (from a human perspective) obvious
semantic differences. This is likely due to a combination
of several factors. The off-the-shelf semantic feature space
used is trained for classification accuracy on a fixed set of
categories; the distances in the resulting embedding space
may be less meaningful than features trained with an em-
bedding loss.

Another problem is the curse of dimensionality: in the
off-the-shelf 512-dimensional feature space we used, lin-
ear classifiers perform well but pairwise distances are less
meaningful. Training purpose-built lower-dimensional em-

(a) Selected pixel (b) Selected pixel

(c) Luminance only (d) Luminance only

(e) Luminance and semantics (f) Luminance and semantics

Figure 9: Two example images and range masks produced
for each using luminance range and a range in combined
luminance and semantic space. In the arch image (left col-
umn), using both luminance and semantics selects the sky
while minimizing the erroneously selected pixels in other
parts if the image compared to the luminance-only version.
In both cases, we tuned the parameters to produce as clean
a result as possible.

beddings on a proxy task with some form of embedding loss
is a promising avenue for improving the general usefulness
of distances in applications like this.

5. Conclusion and Future Work

This work represents early steps in the exploration of se-
mantic pixel feature vectors as a tool for injecting semantic
information into traditional image editing algorithms that
typically rely on only low-level cues. Our approach worked
well in seam carving, while results were less compelling in
range masking.

We believe that the clear next step is to train our own
general-purpose embeddings instead of using off-the-shelf
feature vectors. Such embeddings could be chosen to be
lower-dimensional, avoiding the problems with distances in
high-dimensional space. The features could also be trained
using an embedding loss that might generalize better to un-
familiar semantic content. Because the applications of these



features are difficult to apply to end-to-end learning ap-
proaches, a proxy training task, such as a triplet loss derived
from ground-truth semantic categories could be used.

We believe that the general notion of semantic pixel fea-
ture vectors has promise in image editing applications that
are typically blind to semantics, in much the same way that
feature embeddings have already proven to be useful for
representing image content and style. We have shown one
application where semantic information significantly im-
proves results, but further work is required to investigate
the full generality of our approach.
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